SPECIFICATIONS

Customer	
Product Name	Wire Wound SMD Power Inductor
Sunlord Part Number	SWPA4020S
Customer Part Number	
[⊠New Released,	ed] SPEC No.: SWPA110000

Rev.	Effective Date	Changed Contents	Change reasons	Approved By
01	/	New release	1	Yabing Yang

[This SPEC is total 7 pages including specifications and appendix.] [ROHS Compliant Parts]

Approved By	Checked By	Issued By

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China518110Tel: 0086-755-29832660Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

[For Customer approval Only] Date:							
Qualification Status: 🗌 Full 🗌 Restricted 🗌 Rejected							
Approved By	Verified By	Re-checked By	Checked By				
Comments:							

1. Scope

This specification applies to the SWPA4020S

Product Description and Identification (Part Number) 2.

- 1) Description
 - Wire wound SMD power inductor SWPA4020S, XXX μ H± X%, XXX Ω ±30%, XXX A
- 2) Product Identification (Part Number)

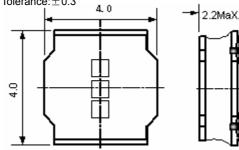
1	Туре	e			2	External Dir	nensions(L×H) [mm]
SWPA	Wire	wound	SMD	power		4020	4.0 X 2.0
SWFA	induct	or					

Nominal Inductance			<u>Га</u>	atura tura	
Example	Nominal Value	3	③ Feature type		
1R0	1µH		S	Standard	
100	10µH				
101	100µH]			
	· · · · · · · · · · · · · · · · · · ·			uctance Tolerance	
6 Packing			Ν	±30%	
Т	Tape Carrier Package		М	±20%	

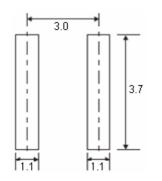
Electrical Characteristics 3.

Please refer to Appendix A (Page 7).

- Operating temperature range: -25 $^\circ \!\! C$ to +120 $^\circ \!\! C$ (Including self-heating) 1)
- Storage temperature range (packaging conditions): -10°C~+40°C and RH 70% (Max.) 2)


Shape and Dimensions 4.

1) Choke body:


Ferrite body for SWPA4020S series

- 2) Dimensions: See Fig. 4-1, Fig. 4-2. Recommended Land Patterns: See Fig. 4-3
 - Unit: mm

Tolerance: ±0.3

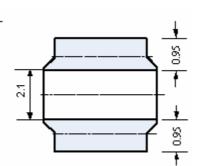
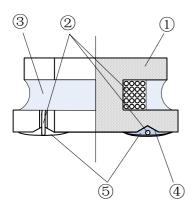



Fig. 4-2

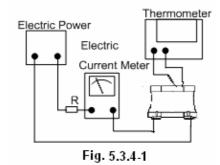
No.	Components	Material
1	Ferrite Core	Ni-Zn Ferrite
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4	Plating Electrodes	Plating :Ag 10-20 μ m Ni 1-3 μ m Sn 3-7 μ m
5	Outer Electrodes	Top surface solder coating Sn96.5%、Ag3%、Cu0.5% 350 μ m Typ. thickness

5. Test and Measurement Procedures

5.1 Test Conditions

5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

Wire Wound SMD Power Inductor


- a. Ambient Temperature: 20±15°C
- b. Relative Humidity: 65%±20%
- c. Air Pressure: 86KPa to 106KPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65%±5%
 - c. Air Pressure: 86KPa to 106KPa

5.2 Visual Examination

a. Inspection Equipment: 10X magnifier

5.3 Electrical Test

- 5.3.1 Inductance (L)
 - a. Refer to Appendix A.
 - b. Test equipment: ZM2355 LCR meter or equivalent.
 - c. Test Frequency and Voltage: refers to Appendix A
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to Appendix A
 - b. Test equipment: HIOKI 3540 or equivalent.
- 5.3.3 Saturation Current (Isat)
 - a. Refer to Appendix A
 - b. Test equipment: Saturation current meter
 - c. Definition of saturation current (Isat): DC current at which the inductance drops approximate 30% from its value without current.
- 5.3.4 Temperature rise current (Irms)
 - a. Refer to Appendix A
 - b. Test equipment (see Fig.5.3.4-1): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method (see Fig. 5.3.4-1):
 - 1. Set test current to be 0mA.
 - 2. Measure initial temperature of choke surface.
 - 3. Gradually increase current and measure choke temperature for corresponding current.
 - Definition of Temperature rise current: DC current that causes the temperature rise (△T =40°C) from 20°C ambient (see Fig. 5.3.4-2).

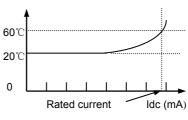


Fig. 5.3.4-2

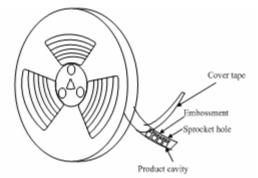
5.4 Reliability Test

Items	Requirements	Test Methods and Remarks
5.4.1 Terminal Strength	No removal or split of the termination or other defects shall occur. X direct Y direct Fig.5.4.1-1	 Solder the inductor to the testing jig (glass epoxy board shown in Fig.5.4.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 10N force. Keep time: 5s
5.4.2 Resistance to Flexure	No visible mechanical damage.	 Solder the chip to the test jig (glass epoxy board) using eutectic solder. Then apply a force in the direction shown as Fig.5.4.2-1. Flexure: 2mm Pressurizing Speed: 0.5mm/sec Keep time: 30±1s Test board size: 100X40X1.0 Land dimension:
5.4.3 Vibration	 No visible mechanical damage. Inductance change: Within ±10% 	 Solder the chip to the testing jig (glass epoxy board shown as the following figure) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions (total of 6 hours).
5.4.4 Temperature coefficient	Inductance change: Within ±20%	 Temperature: -25°C~+85°C With a reference value of +20°C, change rate shall be calculated
5.4.5 Solderability	90% or more of electrode area shall be Coated by new solder.	 The test samples shall be dipped in flux, and then immersed in molten solder. Solder temperature: 245±5°C Duration: 5±1 sec. Solder: Sn/3.0Ag/0.5Cu Flux: 25% resin and 75% ethanol in weight Immersion depth: all sides of mounting terminal shall be immersed
5.4.6 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10% 	 Re-flowing Profile: Please refer to Fig. 5.4.6-1 Test board thickness: 1.0mm Test board material: glass epoxy resin The chip shall be stabilized at normal condition for 1~2 hours before measuring 255 ℃ 200 ℃ 240 ℃ 20~40 sec Gradual Cooling 150 ℃

5.4.7 Thermal	① No visible mechanical damage.	① Temperature and time: -40±3℃ for 30±3 min→85℃
Shock	② Inductance change: Within ±10%	for 30 \pm 3min
		② Transforming interval: Max. 20 sec
		③ Tested cycle: 10 cycles
	30 min. 30 min.	④ The chip shall be stabilized at normal condition for
	85°C	1~2 hours before measuring
	Ambient	
	Temperature 30 min.	
	-40°C	
	Fig. 5.4.7-1 ^{20sec.} (max.)	
5.4.8	 No mechanical damage. 	① Temperature: -40±3℃
Resistance to	② Inductance change: Within ±10%	(2) Duration: $1000^{\pm 24}$ hours
Low	3	③ The chip shall be stabilized at normal condition for
Temperature		1~2 hours before measuring
·		
5.4.9	1 No mechanical damage.	① Temperature: 85±2°C
Resistance to	② Inductance change: Within ±10%	② Duration: 1000 ^{±24} hours
High		③ The chip shall be stabilized at normal condition for
Temperature		1~2 hours before measuring.
5.4.10	① No mechanical damage.	① Temperature: 60±2°C
Damp Heat	② Inductance change: Within ±10%	② Humidity: 90% to 95%RH
		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
5.4.11	① No mechanical damage.	① Temperature: 60±2℃
Loading Under	② Inductance change: Within ±10%	② Humidity: 90% to 95% RH
Damp Heat		③ Applied current: Irms
		④ Duration: 1000 ^{±24} hours
		5 The chip shall be stabilized at normal condition for
		1~2 hours before measuring
5.4.12 Loading	① No mechanical damage.	① Temperature: 85±2℃
at High	② Inductance change: Within ±10%	2 Applied current: Irms
Temperature		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring

6. Packaging and Storage

6.1 Packaging


There is one type of packaging for the chip inductors. Please specify the packing code when ordering. Tape Carrier Packaging:

Packaging code: T

- a. Tape carrier packaging are specified in attached figure Fig.6.1-1~3
- b. Tape carrier packaging quantity please see the following table:

Type SWPA4020S				
Таре	Embossed Tape			
Quantity	3.0K			

(1) Taping Drawings (Unit: mm)

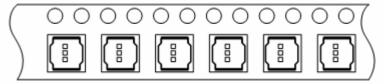
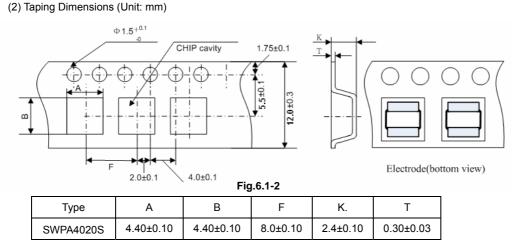
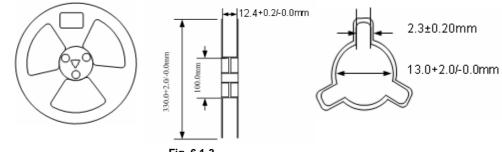




Fig. 6.1-1

(3) Reel Dimensions (Unit: mm)

Fig. 6.1-3

6.2 Storage

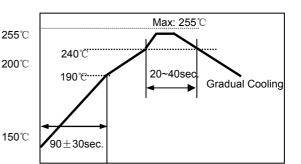
- a. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- b. Recommended conditions: -10°C~40°C, 70%RH (Max.)
- c. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- d. In case of storage over 6 months, solderability shall be checked before actual usage.

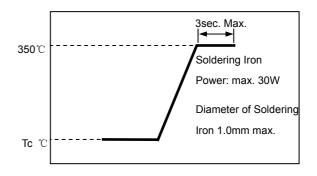
7. Recommended Soldering Technologies

7.1 Re-flowing Profile:

- △ 1~2 °C/sec. Ramp
- \triangle Pre-heating: 150~190°C/90±30 sec.
- \triangle Time above 240 °C: 20~40sec
- \triangle Peak temperature: 255 °C Max./5sec;
- △ Solder paste: Sn/3.0Ag/0.5Cu
- \bigtriangleup Max.2 times for Re-flowing

7.2 Iron Soldering Profile:


- \triangle Iron soldering power: Max.30W
- \triangle Pre-heating: 150°C/60sec.
- \triangle Soldering Tip temperature: 350 °C Max.
- △ Soldering time: 3sec Max.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Max.1 times for iron soldering


[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

- a) Supplier:
 - Shenzhen Sunlord Electronics Co., Ltd.
- b) Manufacturer:
 - Shenzhen Sunlord Electronics Co., Ltd.
- c) Manufacturing Address:

Sunlord Industrial Park, Dafuyuan Industrial Zone, Guanlan, Shenzhen, China Zip: 518110

Appendix A: Electrical Characteristics I. SWPA4020S Series of Power Inductor

Part Number	Inductance	L Tolerance	Inductance Test Condition	DC Resistance (±30%)	Saturation Current	Temperature Rise Current	Min. Self-resonant frequency	Marking
Units	μH	-	-	Ω	А	А	MHz	-
Symbol	L	-	-	DCR	Isat	Irms	SRF	-
SWPA4020S1R0NT	1.0	±30%	100KHz,1V	0.029	4.85	2.15	75	1R0
SWPA4020S1R2NT	1.2	±30%	100KHz,1V	0.029	5.10	2.15	72	1R2
SWPA4020S1R5NT	1.5	±30%	100KHz,1V	0.035	4.45	1.98	71	1R5
SWPA4020S2R2NT	2.2	±30%	100KHz,1V	0.040	3.40	1.85	49	2R2
SWPA4020S3R3MT	3.3	±20%	100KHz,1V	0.070	3.20	1.40	44	3R3
SWPA4020S3R6MT	3.6	±20%	100KHz,1V	0.055	2.80	1.54	49	3R6
SWPA4020S4R7MT	4.7	±20%	100KHz,1V	0.075	2.35	1.34	42	4R7
SWPA4020S5R1MT	5.1	±20%	100KHz,1V	0.085	2.30	1.27	42	5R1
SWPA4020S5R6MT	5.6	±20%	100KHz,1V	0.090	2.20	1.22	30	5R6
SWPA4020S6R2MT	6.2	±20%	100KHz,1V	0.115	2.15	1.08	36	6R2
SWPA4020S6R8MT	6.8	±20%	100KHz,1V	0.125	2.20	1.04	33	6R8
SWPA4020S7R5MT	7.5	±20%	100KHz,1V	0.115	1.85	1.08	30	7R5
SWPA4020S8R2MT	8.2	±20%	100KHz,1V	0.125	1.75	1.04	27	8R2
SWPA4020S100MT	10	±20%	100KHz,1V	0.165	1.60	0.90	26	100
SWPA4020S120MT	12	±20%	100KHz,1V	0.175	1.50	0.88	26	120
SWPA4020S150MT	15	±20%	100KHz,1V	0.230	1.35	0.77	24	150
SWPA4020S220MT	22	±20%	100KHz,1V	0.350	1.05	0.62	15	220
SWPA4020S270MT	27	±20%	100KHz,1V	0.545	1.02	0.50	14	270
SWPA4020S330MT	33	±20%	100KHz,1V	0.550	0.85	0.49	11	330
SWPA4020S390MT	39	±20%	100KHz,1V	0.650	0.82	0.46	11	390
SWPA4020S430MT	43	±20%	100KHz,1V	0.660	0.77	0.45	10	430
SWPA4020S470MT	47	±20%	100KHz,1V	0.710	0.74	0.44	10	470
SWPA4020S510MT	51	±20%	100KHz,1V	0.750	0.70	0.42	10	510
SWPA4020S560MT	56	±20%	100KHz,1V	0.800	0.66	0.41	10	560
SWPA4020S620MT	62	±20%	100KHz,1V	0.900	0.65	0.39	9.6	620
SWPA4020S680MT	68	±20%	100KHz,1V	1.060	0.61	0.36	7.7	680
SWPA4020S750MT	75	±20%	100KHz,1V	1.120	0.60	0.35	7.7	750
SWPA4020S820MT	82	±20%	100KHz,1V	1.170	0.56	0.34	7.2	820
SWPA4020S101MT	100	±20%	100KHz,1V	1.350	0.52	0.31	6.3	101